Mathematical Methods Of Classical Mechanics

Author: V.I. Arnol'd
Publisher: Springer Science & Business Media
ISBN: 9781475720631
Size: 13.21 MB
Format: PDF, ePub, Docs
View: 21

This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.

Mathematical Methods Of Classical Mechanics

Author: V.I. Arnol'd
Publisher: Springer Science & Business Media
ISBN: 0387968903
Size: 14.54 MB
Format: PDF, Kindle
View: 80

This book constructs the mathematical apparatus of classical mechanics from the beginning, examining basic problems in dynamics like the theory of oscillations and the Hamiltonian formalism. The author emphasizes geometrical considerations and includes phase spaces and flows, vector fields, and Lie groups. Discussion includes qualitative methods of the theory of dynamical systems and of asymptotic methods like averaging and adiabatic invariance.

Geometrical Methods In The Theory Of Ordinary Differential Equations

Author: V.I. Arnold
Publisher: Springer Science & Business Media
ISBN: 9781461210375
Size: 17.38 MB
Format: PDF, Docs
View: 95

Since the first edition of this book, geometrical methods in the theory of ordinary differential equations have become very popular and some progress has been made partly with the help of computers. Much of this progress is represented in this revised, expanded edition, including such topics as the Feigenbaum universality of period doubling, the Zoladec solution, the Iljashenko proof, the Ecalle and Voronin theory, the Varchenko and Hovanski theorems, and the Neistadt theory. In the selection of material for this book, the author explains basic ideas and methods applicable to the study of differential equations. Special efforts were made to keep the basic ideas free from excessive technicalities. Thus the most fundamental questions are considered in great detail, while of the more special and difficult parts of the theory have the character of a survey. Consequently, the reader needs only a general mathematical knowledge to easily follow this text. It is directed to mathematicians, as well as all users of the theory of differential equations.

Complex Analysis

Author: Rubi Rodriguez
Publisher: Springer Science & Business Media
ISBN: 9781441973238
Size: 11.52 MB
Format: PDF, Mobi
View: 91

The authors’ aim here is to present a precise and concise treatment of those parts of complex analysis that should be familiar to every research mathematician. They follow a path in the tradition of Ahlfors and Bers by dedicating the book to a very precise goal: the statement and proof of the Fundamental Theorem for functions of one complex variable. They discuss the many equivalent ways of understanding the concept of analyticity, and offer a leisure exploration of interesting consequences and applications. Readers should have had undergraduate courses in advanced calculus, linear algebra, and some abstract algebra. No background in complex analysis is required.

Introduction To Symplectic Topology

Author: Dusa McDuff
Publisher: Oxford University Press
ISBN: 9780198794899
Size: 12.49 MB
Format: PDF
View: 41

Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important results. The first edition of Introduction to Symplectic Topology was published in 1995. The book was the first comprehensive introduction to the subject and became a key text in the area. A significantly revised second edition was published in 1998 introducing new sections and updates on the fast-developing area. This new third edition includes updates and new material to bring the book right up-to-date.

Visual Geometry And Topology

Author: Anatolij T. Fomenko
Publisher: Springer Science & Business Media
ISBN: 9783642762352
Size: 13.88 MB
Format: PDF
View: 45

Geometry and topology are strongly motivated by the visualization of ideal objects that have certain special characteristics. A clear formulation of a specific property or a logically consistent proof of a theorem often comes only after the mathematician has correctly "seen" what is going on. These pictures which are meant to serve as signposts leading to mathematical understanding, frequently also contain a beauty of their own. The principal aim of this book is to narrate, in an accessible and fairly visual language, about some classical and modern achievements of geometry and topology in both intrinsic mathematical problems and applications to mathematical physics. The book starts from classical notions of topology and ends with remarkable new results in Hamiltonian geometry. Fomenko lays special emphasis upon visual explanations of the problems and results and downplays the abstract logical aspects of calculations. As an example, readers can very quickly penetrate into the new theory of topological descriptions of integrable Hamiltonian differential equations. The book includes numerous graphical sheets drawn by the author, which are presented in special sections of "Visual material". These pictures illustrate the mathematical ideas and results contained in the book. Using these pictures, the reader can understand many modern mathematical ideas and methods. Although "Visual Geometry and Topology" is about mathematics, Fomenko has written and illustrated this book so that students and researchers from all the natural sciences and also artists and art students will find something of interest within its pages.